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Abstract: Hyperspectral imaging has many applications. However, the high device costs and low
hyperspectral image resolution are major obstacles limiting its wider application in agriculture and
other fields. Hyperspectral image reconstruction from a single RGB image fully addresses these
two problems. The robust HSCNN-R model with mean relative absolute error loss function and
evaluated by the Mean Relative Absolute Error metric was selected through permutation tests from
models with combinations of loss functions and evaluation metrics, using tomato as a case study.
Hyperspectral images were subsequently reconstructed from single tomato RGB images taken by
a smartphone camera. The reconstructed images were used to predict tomato quality properties
such as the ratio of soluble solid content to total titratable acidity and normalized anthocyanin
index. Both predicted parameters showed very good agreement with corresponding “ground truth”
values and high significance in an F test. This study showed the suitability of hyperspectral image
reconstruction from single RGB images for fruit quality control purposes, underpinning the potential
of the technology—recovering hyperspectral properties in high resolution—for real-world, real time
monitoring applications in agriculture any beyond.

Keywords: hyperspectral image reconstruction; RGB image; deep learning; HSCNN-R; SSC; TTA;
STR; lycopene; tomato

1. Introduction

Hyperspectral imaging (HSI) combines spectroscopy and optical imaging and provides information
about the chemical properties of a material and its spatial distribution [1]. HSI is a form of non-invasive
imaging that applies visible and near-infrared radiation (wavelengths 400 nm to 2500 nm) to chemicals
or biological substances to measure differential reflection [2]. Due to the vast amount of information
to be obtained from hyperspectral images—compared to images in the RGB (red, green, blue)
color model—HSI has been widely applied in research and industry. Applications include rapid,
environmentally friendly, and noninvasive analysis in remote sensing [3,4], biodiversity monitoring [5],
health care [6], wood characterization [7], and the food industry [8,9].
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However, despite the potential benefits, the wide application of HSI is restrained due to
the considerable costs of high-quality imaging devices compared to conventional RGB sensors.
Moreover, most of these HSI devices are scanning-based—using either push broom or filter scanning
approaches—making them less portable and time consuming to operate, which seriously limits the
broader application of HSI technology [10]. In addition, snapshot hyperspectral cameras—able to
take images quickly—often feature a rather low spatial resolution [11]. High-resolution hyperspectral
information is appealing as it not only provides spectral signatures of chemical elements but also
spatial details [12].

Deep learning approaches are increasingly applied in many areas of research and industry [13–15],
and recently allowed the development of hyperspectral image reconstruction approaches [16].
The reconstruction of hyperspectral information from RGB images is envisioned to provide a promising
way of overcoming current limitations of both scanner- and snapshot camera-based hyperspectral
imaging devices, providing image with both high spatial and spectral resolution, and being affordable,
user friendly, and highly portable [17]. In particular, smartphone camera sensors could easily capture
images in high spatial resolution, e.g., twelve million pixels per image, providing a sound basis
for reconstructing high-resolution hyperspectral images. While reconstruction approaches were
initially very rigid and complex [18]—limiting their usability for practical application—recent progress,
in particular the application of deep learning approaches, enabled easier, faster, and more accurate
hyperspectral image reconstruction pipelines [16,19]. Several contrasting approaches based on deep
learning have been proposed recently [20–22].

While hyperspectral recovery from a single RGB image has seen a great improvement with
the development of deep learning, it is still limited for several reasons. For example, hyperspectral
images used during method development were previously restricted to the visual spectral range
(VIS, 400–700 nm) with 31 wavebands and a spectral resolution of 10 nm [18]. Compared to the
near-infrared range (NIR; 800 to 2500 nm), images in the visual range miss information important for
many applications [23]. In addition, considerable uncertainty exists on criteria for model performance
evaluation. Currently three major evaluation metrics are widely used in performance assessment:
Mean Relative Absolute Error (MRAEEM), Root Mean Square Error (RMSE), and Spectral Angle Mapper
(SAM) [17,19,21,24,25]. However, there is no general agreement over which criterion is most robust for
indicating a better model.

A key application of HSI is food quality evaluation [26]. Tomato is one of the most important
fruits for daily consumption, and the fast and non-destructive evaluation of its quality is of great
interest both in research and industry—rendering it a suitable object for a case study [27,28]. Taste of
different tomato varieties and qualities is mainly affected by sugar content, acidity, and the ratio
between them [29]. Previous studies used diverse instruments such as a Raman spectrometer [30],
near-infrared spectrophotometers [31,32] and a multichannel hyperspectral imaging instrument [33]
for quantifying those parameters. The normalized anthocyanin index (NAI) has been shown to be
very effective in predicting lycopene content [34,35]. Lycopene, a secondary plant compound of
the carotenoid class, may reduce the risk of developing several cancer types and coronary heart
diseases [36]. Making use of readily available RGB cameras, e.g., smartphone cameras, in combination
with hyperspectral image reconstruction techniques would greatly facilitate the assessment of tomato
quality parameters. In particular, it will promote the selection and sorting process of tomato fruits in
industry [37] and might even support consumers in the choice of tomato qualities.

In this study, we demonstrate the use of a permutation test to select an appropriate state-of-the-art
deep learning model for hyperspectral image reconstruction from a single RGB image. Subsequently,
we show that the reconstructed images can be used to predict tomato quality properties through
random forests (RF) regression at high accuracies—developing an efficient pipeline from automatic
segmentation to quality assessment. Finally, the application potential of reconstructed hyperspectral
image is discussed.
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2. Materials and Methods

2.1. Plant Material, Growth Conditions, and Tomato Sampling

Ungrafted tomato plants (Solanum lycopersicum L., variety “Dometica” (Rijk Zwaan)) were used in
this experiment. Seeds were sowed on 29th of July 2018 in a climate-controlled chamber; 39 days after
sowing seedlings were transplanted to a Venlo-type greenhouse in southwestern Norway (58◦42′49.2′′ N
5◦31′51.0′′ E) and grown on rockwool slabs with drip irrigation according to common practice [38].
The plants were irrigated with a complete nutrient solution based on standardized recommendations:
17.81 mM NO3, 0.71 mM NH4, 1.74 mM P, 9.2 mM K, 4.73 mM Ca, 2.72 mM Mg, 2.74 mM S, 15 µM Fe,
10 µM Mn, 5 µM Zn, 30 µM B, 0.75 µM Cu, and 0.5 µM Mo. The electrical conductivity of the nutrient
solution was maintained at around 3.2 mS cm−1 and the pH was 5.8. Average daily temperature,
relative humidity, CO2 concentration, and natural solar radiation during the growing period were
22.4 ± 2.8◦C, 74 ± 7.8%, 670 ± 192 ppm and 33 ± 77 W·m−2, respectively. High-pressure sodium lamps
(Philips GP Plus, Gavita Nordic AS, Norway) with an intensity of 300 W·m−2 (1.5 m above the top
of the canopy) were used in addition for ≤18 h per day (i.e., when solar radiation was <250 W·m−2).
Side shoots were pruned regularly, and the number of tomatoes in each truss was pruned to seven.
Tomato fruits for the study were collected 210 days after sowing during the morning. Three undamaged
tomatoes of similar size were selected from each of 12 color grades [39]. Color grades range from 1 to
12—where 1 is uniform green (e.g., mature green) and 12 is uniform dark red (i.e., red overripe).

2.2. Image Acquisition

Hyperspectral images of tomatoes were instantly taken by a portable hyperspectral camera,
Specim IQ (Spectral Imaging Ltd., Oulu Finland; [40]), with a spatial resolution of 512 × 512 pixels,
a spectral resolution of 7 nm, and 204 spectral bands from 397 to 1003 nm. Calibration was conducted
following the user manual. When taking images, the camera was placed 100 cm above the table where
12 tomatoes were placed on a tripod. Two Arrilite 750 Plus halogen lamps (ARRI, Munich, Germany)
were symmetrically placed beside the camera for illumination. A white panel (90% reflectance) was
placed adjacent to the tomatoes as a reference target for reflectance transformation [40].

A set of RGB images was rendered directly from the hyperspectral images under CIE Standard
Illuminant D65 with the CIE 1931 2◦ Standard Observer with gamma correction (γ = 1.4) (Figure 1).
Cropped images of 21 × 31 pixels, excluding overexposed area, from both rendered RGB image and
corresponding hyperspectral image area of each tomato were subsequently used to build the model
(see below).
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The built-in main camera of the smartphone Samsung Galaxy S9+, Android 9.0 (Samsung Corp.,
Seoul, South Korea), was used to take RGB images immediately after hyperspectral imaging. The main
12 Mp camera consists of a 1/2.55′′ sensor and f/1.5 to f/2.4 variable aperture lens; images were taken
with a resolution of 3024 × 4032 pixels; the distance between the smartphone camera and the tomato
was set to fit the fixed-size table inside the view finder—not using the optical zoom. The flashlight was
turned off and autofocus mode was activated when shooting the RGB images. Images were saved in
jpg format.

2.3. Tomato Quality Parameters (“Ground Truth”)

After the imaging campaign, each tomato was immediately and separately homogenized with a
handheld blender. The fresh, uniform samples were used for estimation of soluble solid content (SSC,
expressed as ◦Brix) and total titratable acidity (TTA, expressed as % of citric acid equivalents (CAE)
per FW; [41,42]). SSC was measured with a digital refractometer PR-101α (ATAGO, Tokyo, Japan).
TTA was determined using an automatic titrator 794 Basic Titrino (Metrohm, Herisau, Switzerland) by
titrating with 0.1 M NaOH to pH 8.2. The ratio of SSC to TTA (STR) of each tomato was calculated.

Lycopene content was calculated with the normalized anthocyanin index (NAI) [35], using the
reflectance at 570 nm and 780 nm as determined with the hyperspectral camera (see above). The NAI
of each ith pixel was calculated through Equation (1).

NAIi =
R780i −R570i

R780i + R570i
(1)

where R780i and R570i are the reflectance of the ith pixel of the image at wavelengths 780 nm and
570 nm, respectively; NAIi is the NAI value of the ith pixel. The median value of all NAIi of each
segmented tomato, excluding the overexposed areas [43] on tomato RGB images, was treated as
the overall NAI of an individual tomato. These quality parameters, either determined according to
laboratory measurements (SSC, TTA, STR) or calculated from reflectance measurements using the
hyperspectral camera (NAI), were used as “ground truth” values in this study and subsequently
compared with the predicted parameters (see below).

2.4. Model Selection, Training and Validation

A state-of-the-art deep learning model, i.e., a residual neural network model named HSCNN-R [17],
was selected—showing very good performance for hyperspectral image reconstruction. In HSCNN-R,
a modern residual block [44] was used to replace the plain CNN architecture of HSCNN [16] to improve
the model performance. Six residual blocks, improving the time efficacy without harming performance
during the validation procedure compared with the 16 residual blocks proposed originally (data not
shown), were chosen for the HSCNN-R model with 64 filters in each residual block. Permutation test
was applied during model selection and a total of 36 samples was randomly divided into a training
set (24 samples), and a testing set (12 samples), for 5 times. The batch size, learning rate, learning
rate decay, and optimizer weight initialization in different layers in HSCNN-R were set according to
Shi et al. (2018).

Two different loss functions were used to compare their effectiveness in hyperspectral image
reconstruction: mean square error (MSE, Equation (2)) [24,25], one of the most widely used loss
functions, and mean relative absolute error (MRAELF, Equation (3)) which was suggested to reduce
the bias from different illuminance levels [17].

Igt
(i) and Ire

(i) represent the ith pixel of the ground truth and reconstructed hyperspectral
images, respectively.

MSE =
( 1

n

) n∑
i=1

(
Igt

(i)
− Ire

(i)
)2

(2)
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MRAELF =
( 1

n

) n∑
i=1

(∣∣∣Igt
(i)
− Ire

(i)
∣∣∣)/Igt

(i) (3)

Three evaluation metrics, MRAEEM (Equation (4)), RMSE (Equation (5)), and SAM (Equation (6))
were used to select models with their corresponding minimum values during validation; smaller
values indicate less error on reconstructed hyperspectral images. RMSE was also used to evaluate
the difference between ground truth and reconstructed hyperspectral images, and SAM quantifies
the similarity of the original and reconstructed reflectance across the spectra through measuring the
average angle between them [45].

MRAEEM =
( 1

n

) n∑
i=1

(∣∣∣Igt
(i)
− Ire

(i)
∣∣∣)/Igt

(i) (4)

RMSE =
( 1

n

) n∑
i=1

√(
Igt(i) − Ire(i)

)2
(5)

SAM =
1
n

cos−1


n∑

j=1

(I(i)gt )
T
· I(i)re

||I(i)gt ||2·||I
(i)
re ||2

 (6)

Igt
(i), Ire

(i) are the ith pixel in the ground truth and reconstructed hyperspectral images, respectively;
T means transpose, and n is the total number of pixels of each image.

For model training, the batch size was set to 8 and the optimizer AdaMax [46] with settings of
β1 = 0.9, β2 = 0.999, and eps = 10−8. The weights were initialized though HeNormal initialization [44]
in each convolutional layer. The initial learning rate was set at 0.005 and the learning rate decreased by
10% every 100 epochs. The model performance was evaluated through the three evaluation metrics
MRAEEM, RMSE, and SAM (see above). All models were trained until no further decrease in validation
loss occurred.

During validation, the whole cropped RGB image (21 × 31 × 3) from the validation set for HSCNN-R
was used as input to reconstruct the hyperspectral image with 204 spectral bands (21 × 31 × 204);
MRAEEM, RMSE, and SAM values between reconstructed and ground truth hyperspectral images
were calculated accordingly. Based on the 30 models selected, two loss functions × three evaluation
metrics × 5 times’ random sampling, values from evaluation metrics were analyzed between and
within two loss functions by permutation test using the EnvStats package [47] in R [48]. The model
generating constant performance was selected and used to reconstruct hyperspectral images from
single tomato RGB images.

2.5. Image Segmentation and Quality Parameter Prediction

For tomato quality parameter prediction, the overall spectral information of each tomato was
considered. The RGB images from Samsung Galaxy S9+ and masks outlined manually through
Labelme [49] were used for training. RetinaNet [50] was trained for 5 epochs with 10,000 iterations in
each epoch to detect and segment individual tomato; learning rate was set at 2e−8 and kept constant
during training.

The reconstructed hyperspectral reflectance of each tomato was extracted based on the segmented
tomato mask from RGB images from smartphone, excluding the overexposed region, and then subjected
to asymmetric least squares baseline correction of the logarithmic linearized reflectance log(1/R) [51];
the median values of spectral reflectance of different wavebands were extracted for each tomato for
quality parameter prediction. The recursive feature elimination method from the Caret package with
RF model and repeated 10-fold cross validation was applied to select important wavebands which
were then used to build the prediction model; the optimal model was selected based on the prediction
accuracy by tuning the parameter, mtry, in RF models. The parameter mtry sets the number of input
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variables randomly chosen at each node of the RF models. The predicted values of each sample were
based on the model trained on the rest of the samples, R2 and p values in the F test were calculated
based on the predictions and corresponding ground truth values (see above) of all tomato samples.

The free of charge cloud service Google Colaboratory (Colab) with Python 3 runtime served as
major platform for model training and validation. Colab is equipped with a 2.3 GHz and 12.6 GB RAM
Intel Xeon processor with two cores and a NVIDIA Tesla K80 GPU with 12 GB RAM.

Detailed implementation of the whole analysis pipeline is available upon request.

3. Results

3.1. Model Selection and Performance

The training and validation histories of the three evaluation metrics MRAEEM, RMSE, and SAM
are displayed in Figure 2. MRAEEM, RMSE, and SAM of models with MRAELF loss function
(Figure 2, left subpanels) decreased sharply at the beginning and reached minimum values of 0.0453,
6.223, and 1.676 at the 472nd, 476th, and 500th epoch, respectively. For all three evaluation metrics,
values increased slightly with subsequent epochs and finally stabilized after approx. 1000 epochs.
The minimum values of MRAEEM, RMSE, and SAM from models with MSE loss function (Figure 2,
right subpanels) also decreased, possessing higher fluctuations, and showed higher minimum values
of 0.0507, 6.778, and 1.735 at the 2663th, 2156th, and 2531st epoch, respectively (Figure 2, Table 1).
Both the number of epochs and time consumed for reaching the minimum values of three criteria
during validation were much less in models with the MRAELF loss function, i.e., less than 500 epochs
and 90 seconds, compared with MSE ones.

Table 1. Examples of minimum Mean Relative Absolute Error (MRAEEM), Root Mean Square Error
(RMSE), and Spectral Angle Mapper (SAM) and the corresponding epoch and time consumed when
reaching these minimum values of different evaluation metrics during validation with the HSCNN-R
model with MRAELF and MSE loss functions, respectively.

Loss Function Epoch Time (s) MRAEEM RMSE SAM (◦)

MRAELF

472 83.57 0.0453 6.264 1.743
476 84.29 0.0454 6.223 1.723
500 88.58 0.0513 7.053 1.676

MSE
2663 497.49 0.0507 7.157 1.773
2156 404.69 0.0554 6.778 1.761
2531 473.56 0.0570 6.922 1.735

Note: The minimum values from different evaluation metrics within the same loss function are in bold face.

The minimum values of MRAE (MRAEEMmin) models with MRAELF loss function were significantly
lower than the ones from models with MSE loss function (Figure 3a). Minimum values of RMSE and
SAM models were statistically the same using either of the two loss functions (Figure 3b,c). During the
permutation test there was no significant difference in MRAEEMmin, RMSEmin, and SAMmin values
between the three evaluation metrics within each loss function (Figure 3d–i). Thus, a model with
MRAELF loss function evaluated by MRAEEM was used to reconstruct the hyperspectral images from
single RGB images for non-destructive tomato quality parameter quantification.
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Figure 2. Training and validation history of the HSCNN-R model reconstructing hyperspectral
images from single RGB images. Mean Relative Absolute Error (MRAEEM) (a), Root Mean Square
Error (RMSE) (b), and Spectral Angle Mapper (SAM) (c) change during model training (red dots),
and testing (blue dots), with either MRAELF loss function (left; 3000 epochs) or MSE loss function (right;
5000 epochs). The green dashed lines indicate the minimum values obtained from each evaluation
metric on validation data with both MSE and MRAELF loss functions considered, and the black triangles
indicate the epochs where the minimum values of each evaluation metric with different loss functions
are located. The dashed lines indicate breaks in the Y-axis to improve visualization.
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Figure 3. Selection of models with a lower loss when training with the HSCNN-R model using different
loss functions and evaluated with different evaluation metrics. Comparison of minimum values of
MRAEEM (MRAEEMmin), RMSE (RMSEmin), and SAM (SAMmin) based on three evaluation metrics,
and MRAEEM, RMSE, and SAM, from models trained with either MRAELF or MSE loss function during
permutation test. (a–c) Comparisons between two loss functions, mean values with standard error,
n = 15, * indicates a significant difference with p < 0.05; (d–f) comparisons within the loss functions
MRAELF (d–f) and MSE (g–i), mean values with standard error, n = 5.

The reconstructed spectral reflectance from RGB images, either directly taken by a smartphone
RGB sensor or rendered from hyperspectral images, were generally very similar to their corresponding
spectral reflectance as determined with a hyperspectral camera (Figure 4a), and its 1st derivatives
(Figure 4b). Largest deviations, with greater reconstructed reflectance in RGB images taken by the
smartphone, occurred in the spectral range of approximately 380–740 nm. The reconstructed spectral
reflectance of the central pixels of the validation set of tomatoes of color grades 1–12 are given in
Supplementary Figure S1.

3.2. Tomato Quality Parameter Prediction

Tomato quality properties’ soluble solid content (SSC), total titratable acidity (TTA), and their
ratio (STR) were predicted with good agreement to the corresponding laboratory measurements
(Figure 5a–c), featuring R2 of 0.51, 0.61, and 0.78, respectively. Lycopene content, as indicated by
NAI, was predicted with a high accuracy of R2 = 0.92 (Figure 5d). All four quality parameters were
predicted significantly better than random guessing, denoted by corresponding p values of 4.02 × 10−6,
8.8 × 10−8, 1.37 × 10−11, and 2.54 × 10−18 in F test. The relationship between SSC, TTA, STR, and the
NAI was found to be close to zero (Figure S2).
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4. Discussion

HSI reconstruction has become popular and opened a new field for low-cost methods of acquiring
hyperspectral information in high resolution, both spatial and spectral. Even though there has been
some research developing methods for reconstructing hyperspectral images [17,18,25], real world
applications of these methods are still lacking [10]. This study has demonstrated the potential of using
the HSCNN-R model for hyperspectral reconstruction in the visual near-infrared range to predict
key quality parameters of tomato. Three models can be selected based on three evaluation metrics,
MRAEEM, RMSE, and SAM, as their corresponding minimum values did not appear in the same
model, as has been found previously [17,25,52]. A single lower value from any one of these three
evaluation metrics thus cannot indicate a better model performance. As only the minimum errors
reconstructed from models with MRAELF loss function and MRAEEM evaluation metric were found
to be significantly lower than ones with MSE loss function, it can be concluded that these models
were consistently superior in spectral reflectance reconstruction compared with models with other
loss function and evaluation metric combinations. This was also found by Shi et al. [17] as MRAELF

loss function was more robust to outliers and treated wavebands of the whole spectra with different
illumination levels were more similar compared with the MSE loss function. As these loss functions
can also be purpose specific, MRAELF loss function should thus be chosen if all wavebands are equally
prioritized for better exploration of the whole spectra, while MSE should be preferred if the highly
illuminated spectral reflectance is of greater interest.

Models trained with the MRAELF loss function were able to converge with fewer epochs at
higher speed, and reached lower errors compared to the MSE loss function, which is beneficial for
hyperspectral image reconstruction as model training is expected in practice to be implemented in real
time prediction, e.g., sorting tomato based on lycopene content on the conveyor belt. The increase of
validation error after reaching the minimum value, for either MRAEEM, RMSE, or SAM, was mainly
due to overfitting on a small training dataset [53].

To further confirm the robustness of the selected model in reconstructing hyperspectral images,
reconstructed spectral reflectance of RGB images either rendered from hyperspectral images or directly
captured by smartphone camera, were compared with directly measured spectral reflectance from the
hyperspectral camera (“ground truth”). The similarity of both the reflectance and corresponding 1st

derivative demonstrated that the selected approach resulted in a reliable reconstruction of the spectral
pattern. As the RGB image used for training was rendered from hyperspectral images by a standard
CIE matching function while smartphone RGB sensors have different spectral sensitivity functions
likely deviating from CIE [22], an increase of errors during the reconstruction of hyperspectral images
from RGB smartphone sensors might be expected. However, although the RGB images from the
smartphone were completely new to the trained model, the reconstruction results demonstrated the
soundness of the model in recovering the spectral reflectance even from regular RGB images taken by
a standard smartphone model.

The very high R2 value in NAI prediction showed that the reconstructed hyperspectral image
was suitable for predicting tomato lycopene content non-destructively based on the RGB images
of intact tomatoes. NAI is the indicator for lycopene which can be closely reflected by the color
of tomato [54]. Tomato color change from green to red due to the degradation of chlorophyll
while accumulating lycopene during development [55]. The high prediction accuracy for NAI via
reconstructed hyperspectral image for lycopene is probably also related to the large range of color
change in the corresponding tomato sample. Both TTA and SSC were less precisely predicted; however,
their ratio STR was predicted with a high R2 value and very high significance in F test, which agrees
with earlier findings [35]. The higher precision of reconstructed hyperspectral images in predicting STR
values is fortunate as it is also more informative compared with either TTA or SSC values alone—tomato
flavor is determined mainly by the ratio of sugar and acidity rather than the two separate properties [29].
Overall, the high accuracy in tomato quality prediction highlights the robustness and potential of
hyperspectral image reconstruction.
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The good to very good performance, both in reconstructing hyperspectral images from model
unseen RGB images from smartphone camera and in predicting tomato quality parameters at moderate
to high accuracies, makes the HSCNN-R model an important tool for future imaging applications.
Hyperspectral reconstruction from a single RGB image makes HSI application mobile and low cost,
and allows for easy implementation through either a cloud service or an app. With the selected model
and trained weights, we can now generate hyperspectral images of tomatoes of the same variety at
least with consumer level cameras and explore the other hyperspectral properties of interest—as the
example on tomato quality predicted from smartphone images illustrates in this study (Figure 5).
Specifically, this provides huge benefits for tomato research and industry, and potentially also for other
fruit crops, such as cucumber and apple. Even though it is possible to predict the STR of each pixel
of tomato image directly without reconstructing the whole spectrum from 400 to 1000 nm, the fully
reconstructed spectral reflectance provides opportunities to explore other hyperspectral properties
through different machine learning algorithms, offering much higher flexibility. Important bands can
even be selected to reduce workload while improving prediction accuracy, as is commonly used in HSI
analysis [56,57].

5. Conclusions

This study first demonstrates the use of hyperspectral image reconstruction from a single
RGB image for a real-world application—using tomato fruits as an example. The capability of
HSCNN-R for spectral reconstruction beyond the visual-range towards near-infrared was demonstrated.
The reconstructed hyperspectral images from RGB images of tomato were able to estimate important
tomato quality parameters with high accuracy.

Hyperspectral image reconstruction could be a promising approach for a range of other fields,
thereby further developing its full potential. With HSCNN-R, we can potentially reconstruct
hyperspectral images in both higher spatial and spectral resolution at much lower costs. However,
the reconstructing model built on tomatoes can probably not be transferred easily to other categories,
e.g., determination of chemical properties of other fruits, soils or rocks, or to different light
conditions—which can be an obstacle for extending the application range. Thus, libraries containing
hyperspectral images in different categories of interest (fruits of various varieties, and at different
harvest stages and growing conditions (incl. stress), soil types, wood, skin etc.) should be built for
training models to fit each category specifically or developing a general model that fits more categories.

Future advancement in this field should particularly focus on: (1) exploration of more robust
models for hyperspectral image reconstruction in various illumination conditions, and (2) extending
the application field using current state of the art models and building libraries for a wider range of
objects as exemplified above. Thereby it can be expected that higher resolution hyperspectral images
will be more accessible for a range of real-world applications in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/19/3258/s1,
Figure S1: Reconstructed spectral reflectance (A–L) and their first derivatives (a–l) for tomato images in 12 grades
based on color tile. Figure S2: The correlations between normalized anthocyanin index (NAI) and (a) soluble solid
content (SSC), (b) total titratable acid (TTA), (c) the ratio of SSC to TTA (STR), respectively.

Author Contributions: J.Z. collected data, did data analysis and drafted the manuscript; D.K. performed the
experiment and collected data; M.V. and J.L.C. designed the experiment; J.Z., D.K., B.R., G.B., M.V., N.C. and J.L.C.
contributed substantially to the manuscript preparation and revision. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the European Union’s Horizon 2020 Research and Innovation program as part
of the SiEUGreen project (Grant Agreement N 774233), by the Norwegian Ministry of Foreign Affairs as part of the
Sinograin II project (Grant Agreement CHN 2152, 17/0019), by the Bionær program of the Research Council of
Norway as part of the research project “Biofresh” (project no 255613/E50), and by the Research Council of Norway
InnoLED project (project no: 297301).

http://www.mdpi.com/2072-4292/12/19/3258/s1


Remote Sens. 2020, 12, 3258 12 of 14

Acknowledgments: We thank Anne Kvitvær for technical support during tomato harvesting. The comments of
three anonymous reviewers helped improving a previous version of this work.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

1. Dong, X.; Jakobi, M.; Wang, S.; Köhler, M.H.; Zhang, X.; Koch, A.W. A review of hyperspectral imaging for
nanoscale materials research. Appl. Spectrosc. Rev. 2019, 54, 285–305. [CrossRef]

2. Cozzolino, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance
spectroscopy. LWT Food Sci. Technol. 2004, 37, 447–452. [CrossRef]

3. Mahlein, A.K.; Kuska, M.T.; Thomas, S.; Bohnenkamp, D.; Alisaac, E.; Behmann, J.; Wahabzada, M.;
Kersting, K. Plant disease detection by hyperspectral imaging: From the lab to the field. Adv. Anim. Biosci.
2017, 8, 238–243. [CrossRef]

4. Qi, H.; Paz-Kagan, T.; Karnieli, A.; Jin, X.; Li, S. Evaluating calibration methods for predicting soil available
nutrients using hyperspectral VNIR data. Soil Tillage Res. 2018, 175, 267–275. [CrossRef]

5. Vance, C.K.; Tolleson, D.R.; Kinoshita, K.; Rodriguez, J.; Foley, W.J. Near infrared spectroscopy in wildlife
and biodiversity. J. Near Infrared Spectrosc. 2016, 24, 1–25. [CrossRef]

6. Afara, I.O.; Prasadam, I.; Arabshahi, Z.; Xiao, Y.; Oloyede, A. Monitoring osteoarthritis progression using
near infrared (NIR) spectroscopy. Sci. Rep. 2017, 7, 11463. [CrossRef] [PubMed]

7. Tsuchikawa, S.; Kobori, H. A review of recent application of near infrared spectroscopy to wood science and
technology. J. Wood Sci. 2015, 61, 213–220. [CrossRef]

8. Barbin, D.F.; ElMasry, G.; Sun, D.-W.; Allen, P.; Morsy, N. Non-destructive assessment of microbial
contamination in porcine meat using NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2013, 17,
180–191. [CrossRef]

9. Menesatti, P.; Antonucci, F.; Pallottino, F.; Giorgi, S.; Matere, A.; Nocente, F.; Pasquini, M.; D’Egidio, M.G.;
Costa, C. Laboratory vs. in-field spectral proximal sensing for early detection of Fusarium head blight
infection in durum wheat. Biosyst. Eng. 2013, 114, 289–293. [CrossRef]

10. Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep learning meets hyperspectral image analysis:
A multidisciplinary review. J. Imaging 2019, 5, 52. [CrossRef]

11. Cao, X.; Du, H.; Tong, X.; Dai, Q.; Lin, S. A prism-mask system for multispectral video acquisition. IEEE Trans.
Pattern Anal. Mach. Intell. 2011, 33, 2423–2435.

12. Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.;
Mahlein, A.-K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical
perspective. J. Plant Dis. Prot. 2018, 125, 5–20. [CrossRef]

13. Rahimy, E. Deep learning applications in ophthalmology. Curr. Opin. Ophthalmol. 2018, 29, 254–260.
[CrossRef] [PubMed]

14. Rao, Q.; Frtunikj, J. Deep learning for self-driving cars: Chances and challenges. In Proceedings of the 1st
International Workshop on Software Engineering for AI in Autonomous Systems, Gothenburg, Sweden,
28 May 2018; pp. 35–38.

15. Ghosal, S.; Zheng, B.; Chapman, S.C.; Potgieter, A.B.; Jordan, D.R.; Wang, X.; Singh, A.K.; Singh, A.;
Hirafuji, M.; Ninomiya, S. A weakly supervised deep learning framework for sorghum head detection and
counting. Plant Phenomics 2019, 2019, 1525874. [CrossRef]

16. Xiong, Z.; Shi, Z.; Li, H.; Wang, L.; Liu, D.; Wu, F. HSCNN: CNN-based hyperspectral image recovery from
spectrally undersampled projections. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 518–525.

17. Shi, Z.; Chen, C.; Xiong, Z.; Liu, D.; Wu, F. HSCNN+: Advanced CNN-based hyperspectral recovery from
rgb images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 939–947.

18. Arad, B.; Ben-Shahar, O. Sparse recovery of hyperspectral signal from natural RGB images. In Proceedings
of the European Conference on Computer Vision; Springer: New York, NY, USA, 2016; pp. 19–34.

19. Galliani, S.; Lanaras, C.; Marmanis, D.; Baltsavias, E.; Schindler, K. Learned spectral super-resolution. arXiv
2017, arXiv:1703.09470.

http://dx.doi.org/10.1080/05704928.2018.1463235
http://dx.doi.org/10.1016/j.lwt.2003.10.013
http://dx.doi.org/10.1017/S2040470017001248
http://dx.doi.org/10.1016/j.still.2017.09.006
http://dx.doi.org/10.1255/jnirs.1199
http://dx.doi.org/10.1038/s41598-017-11844-3
http://www.ncbi.nlm.nih.gov/pubmed/28904358
http://dx.doi.org/10.1007/s10086-015-1467-x
http://dx.doi.org/10.1016/j.ifset.2012.11.001
http://dx.doi.org/10.1016/j.biosystemseng.2013.01.004
http://dx.doi.org/10.3390/jimaging5050052
http://dx.doi.org/10.1007/s41348-017-0124-6
http://dx.doi.org/10.1097/ICU.0000000000000470
http://www.ncbi.nlm.nih.gov/pubmed/29528860
http://dx.doi.org/10.34133/2019/1525874


Remote Sens. 2020, 12, 3258 13 of 14

20. Tschannerl, J.; Ren, J.; Marshall, S. Low cost hyperspectral imaging using deep learning based spectral
reconstruction. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
2018, 11257 LNCS, s 206–s 217.

21. Stiebel, T.; Koppers, S.; Seltsam, P.; Merhof, D. Reconstructing spectral images from rgb-images using a
convolutional neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 948–953.

22. Nie, S.; Gu, L.; Zheng, Y.; Lam, A.; Ono, N.; Sato, I. Deeply learned filter response functions for hyperspectral
reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 4767–4776.

23. Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease
identification using explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 98.
[CrossRef] [PubMed]

24. Can, Y.B.; Timofte, R. An efficient CNN for spectral reconstruction from RGB images. arXiv 2018,
arXiv:1804.04647.

25. Yan, Y.; Zhang, L.; Li, J.; Wei, W.; Zhang, Y. Accurate Spectral Super-Resolution from Single RGB Image
Using Multi-scale CNN. In Pattern Recognition and Computer Vision; Lai, J.H., Liu, C.L., Chen, X., Zhou, J.,
Tan, T., Zheng, N., Zha, H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 206–217.

26. Ma, J.; Sun, D.-W.; Pu, H.; Cheng, J.-H.; Wei, Q. Advanced techniques for hyperspectral imaging in the food
industry: Principles and recent applications. Annu. Rev. Food Sci. Technol. 2019, 10, 197–220. [CrossRef]
[PubMed]

27. Jiang, F.; Lopez, A.; Jeon, S.; de Freitas, S.T.; Yu, Q.; Wu, Z.; Labavitch, J.M.; Tian, S.; Powell, A.L.T.; Mitcham, E.
Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences
tomato cracking. Hortic. Res. 2019, 6, 17. [CrossRef]

28. Polder, G.; Van Der Heijden, G.; Van der Voet, H.; Young, I.T. Measuring surface distribution of carotenes and
chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biol. Technol. 2004, 34, 117–129.
[CrossRef]

29. Simonne, A.H.; Fuzere, J.M.; Simonne, E.; Hochmuth, R.C.; Marshall, M.R. Effects of nitrogen rates on
chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 2007, 30, 927–935.
[CrossRef]

30. Qin, J.; Chao, K.; Kim, M.S. Investigation of Raman chemical imaging for detection of lycopene changes in
tomatoes during postharvest ripening. J. Food Eng. 2011, 107, 277–288. [CrossRef]

31. Clément, A.; Dorais, M.; Vernon, M. Nondestructive measurement of fresh tomato lycopene content and other
physicochemical characteristics using visible—NIR spectroscopy. J. Agric. Food Chem. 2008, 56, 9813–9818.
[CrossRef]

32. Akinaga, T.; Tanaka, M.; Kawasaki, S. On-tree and after-harvesting evaluation of firmness, color and lycopene
content of tomato fruit using portable NIR spectroscopy. J. Food Agric. Environ. 2008, 6, 327–332.

33. Huang, Y.; Lu, R.; Chen, K. Assessment of tomato soluble solids content and pH by spatially-resolved and
conventional Vis/NIR spectroscopy. J. Food Eng. 2018, 236, 19–28. [CrossRef]

34. Ntagkas, N.; Min, Q.; Woltering, E.J.; Labrie, C.; Nicole, C.C.S.; Marcelis, L.F.M. Illuminating tomato fruit
enhances fruit vitamin C content. In Proceedings of the VIII International Symposium on Light in Horticulture
1134, East Lansing, MI, USA, 22–26 May 2016; pp. 351–356.

35. Farneti, B.; Schouten, R.E.; Woltering, E.J. Low temperature-induced lycopene degradation in red ripe tomato
evaluated by remittance spectroscopy. Postharvest Biol. Technol. 2012, 73, 22–27. [CrossRef]

36. Farinetti, A.; Zurlo, V.; Manenti, A.; Coppi, F.; Mattioli, A.V. Mediterranean diet and colorectal cancer:
A systematic review. Nutrition 2017, 43, 83–88. [CrossRef]

37. Chandrasekaran, I.; Panigrahi, S.S.; Ravikanth, L.; Singh, C.B. Potential of Near-Infrared (NIR) spectroscopy
and hyperspectral imaging for quality and safety assessment of fruits: An overview. Food Anal. Methods
2019, 12, 2438–2458. [CrossRef]

38. Paponov, M.; Kechasov, D.; Lacek, J.; Verheul, M.; Paponov, I.A. Supplemental LED inter-lighting increases
tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity.
Front. Plant Sci. 2020, 10, 1656. [CrossRef]

39. Cantwell, M. Optimum procedures for ripening tomatoes. Manag. Fruit Ripening Postharvest Hortic. Ser. 2000,
9, 80–88.

http://dx.doi.org/10.1186/s13007-019-0479-8
http://www.ncbi.nlm.nih.gov/pubmed/31452674
http://dx.doi.org/10.1146/annurev-food-032818-121155
http://www.ncbi.nlm.nih.gov/pubmed/30633569
http://dx.doi.org/10.1038/s41438-018-0105-3
http://dx.doi.org/10.1016/j.postharvbio.2004.05.002
http://dx.doi.org/10.1080/15226510701375465
http://dx.doi.org/10.1016/j.jfoodeng.2011.07.021
http://dx.doi.org/10.1021/jf801299r
http://dx.doi.org/10.1016/j.jfoodeng.2018.05.008
http://dx.doi.org/10.1016/j.postharvbio.2012.05.008
http://dx.doi.org/10.1016/j.nut.2017.06.008
http://dx.doi.org/10.1007/s12161-019-01609-1
http://dx.doi.org/10.3389/fpls.2019.01656


Remote Sens. 2020, 12, 3258 14 of 14

40. Behmann, J.; Acebron, K.; Emin, D.; Bennertz, S.; Matsubara, S.; Thomas, S.; Bohnenkamp, D.; Kuska, M.;
Jussila, J.; Salo, H. Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its
application for plant phenotyping and disease detection. Sensors 2018, 18, 441. [CrossRef]

41. Mitcham, B.; Cantwell, M.; Kader, A. Methods for determining quality of fresh commodities.
Perishables Handl. Newsl. 1996, 85, 1–5.

42. Verheul, M.J.; Slimestad, R.; Tjøstheim, I.H. From producer to consumer: Greenhouse tomato quality as
affected by variety, maturity stage at harvest, transport conditions, and supermarket storage. J. Agric.
Food Chem. 2015, 63, 5026–5034. [CrossRef] [PubMed]

43. Yamamoto, K.; Guo, W.; Yoshioka, Y.; Ninomiya, S. On plant detection of intact tomato fruits using image
analysis and machine learning methods. Sensors 2014, 14, 12191–12206. [CrossRef] [PubMed]

44. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

45. Renza, D.; Martinez, E.; Molina, I. Unsupervised change detection in a particular vegetation land cover type
using spectral angle mapper. Adv. Sp. Res. 2017, 59, 2019–2031. [CrossRef]

46. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
47. Millard, S.P.; Kowarik, M.A.; Imports, M. Package ‘EnvStats’. Packag. Environ. Stat. Version 2018, 2, 31–32.
48. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2013.
49. Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image

annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [CrossRef]
50. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.
51. Esquerre, C.; Gowen, A.A.; Burger, J.; Downey, G.; O’Donnell, C.P. Suppressing sample morphology effects

in near infrared spectral imaging using chemometric data pre-treatments. Chemom. Intell. Lab. Syst. 2012,
117, 129–137. [CrossRef]

52. Liu, W.; Lee, J. An Efficient Residual Learning Neural Network for Hyperspectral Image Superresolution.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1240–1253. [CrossRef]

53. Martin-Diaz, I.; Morinigo-Sotelo, D.; Duque-Perez, O.; de J. Romero-Troncoso, R. Early fault detection in
induction motors using AdaBoost with imbalanced small data and optimized sampling. IEEE Trans. Ind. Appl.
2016, 53, 3066–3075. [CrossRef]

54. Kozukue, N.; Friedman, M. Tomatine, chlorophyll, β-carotene and lycopene content in tomatoes during
growth and maturation. J. Sci. Food Agric. 2003, 83, 195–200. [CrossRef]

55. Schouten, R.E.; Farneti, B.; Tijskens, L.M.M.; Alarcón, A.A.; Woltering, E.J. Quantifying lycopene synthesis
and chlorophyll breakdown in tomato fruit using remittance VIS spectroscopy. Postharvest Biol. Technol. 2014,
96, 53–63. [CrossRef]

56. Singh, L.; Mutanga, O.; Mafongoya, P.; Peerbhay, K. Remote sensing of key grassland nutrients using
hyperspectral techniques in KwaZulu-Natal, South Africa. J. Appl. Remote Sens. 2017, 11, 36005. [CrossRef]

57. Kawamura, K.; Tsujimoto, Y.; Rabenarivo, M.; Asai, H.; Andriamananjara, A.; Rakotoson, T. Vis-NIR
spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in
Madagascar. Remote Sens. 2017, 9, 1081. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18020441
http://dx.doi.org/10.1021/jf505450j
http://www.ncbi.nlm.nih.gov/pubmed/25916229
http://dx.doi.org/10.3390/s140712191
http://www.ncbi.nlm.nih.gov/pubmed/25010694
http://dx.doi.org/10.1016/j.asr.2017.01.027
http://dx.doi.org/10.1007/s11263-007-0090-8
http://dx.doi.org/10.1016/j.chemolab.2012.02.006
http://dx.doi.org/10.1109/JSTARS.2019.2901752
http://dx.doi.org/10.1109/TIA.2016.2618756
http://dx.doi.org/10.1002/jsfa.1292
http://dx.doi.org/10.1016/j.postharvbio.2014.05.007
http://dx.doi.org/10.1117/1.JRS.11.036005
http://dx.doi.org/10.3390/rs9101081
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Plant Material, Growth Conditions, and Tomato Sampling 
	Image Acquisition 
	Tomato Quality Parameters (“Ground Truth”) 
	Model Selection, Training and Validation 
	Image Segmentation and Quality Parameter Prediction 

	Results 
	Model Selection and Performance 
	Tomato Quality Parameter Prediction 

	Discussion 
	Conclusions 
	References

